How to Overcome the Slow Death of Intercropping in the North China Plain
نویسندگان
چکیده
Intercropping has a strong potential to counteract the severe degradation of arable land in the North China Plain (NCP). However, a rapid decline of intercropping can be observed in the last decades. The present paper investigates the reason for this development and suggests solutions on how to adjust intercropping systems to fit modern agriculture. Firstly, the developments of socioeconomic conditions for farming were assessed, analyzing the statistical yearbooks of the seven provinces of the North China Plain. Secondly, a survey was conducted in the study region to understand the current state and future of intercropping systems. The investigations revealed that, due to limited off-farm income possibilities in the past, intercropping has been a viable solution to intensively use the limited land resources per farm household. However, a shift of rural laborers into other sectors has recently been observed. Thus, decreasing importance of income from agriculture and increasing labor costs are heralding the slow death of labor-intensive intercropping systems. Two possible solutions are discussed in the paper. Either the traditional row-intercropping systems can be transformed into stripintercropping systems that can be mechanized using existing machinery; or, new machinery has to be developed that enables the mechanization of the traditional row-intercropping systems. OPEN ACCESS Sustainability 2012, 4 2551
منابع مشابه
Economic Performance and Sustainability of a Novel Intercropping System on the North China Plain
Double cropping of wheat and maize is common on the North China Plain, but it provides limited income to rural households due to the small farm sizes in the region. Local farmers in Quzhou County have therefore innovated their production system by integration of watermelon as a companion cash crop into the system. We examine the economic performance and sustainability of this novel intercroppin...
متن کاملImpact of spatial-temporal variations of climatic variables on summer maize yield in North China Plain
Summer maize (Zea mays L.) is one of the dominant crops in the North China Plain (NCP). Its growth is greatly influenced by the spatial-temporal variation of climatic variables, especially solar radiation, temperature and rainfall. The WOFOST (version 7.1) model was applied to evaluate the impact of climatic variability on summer maize yields using historical meteorological data from 1961 to 20...
متن کاملMore aboveground biomass, phosphorus accumulation and remobilization contributed to high productivity of intercropping wheat
Intercropping often results in increasing production than sole per unit land area, but theunderlying mechanisms are poorly understood. Plants showed different physiologicalcharacteristics in intercropping and sole. However, less information was shown the relationshipsbetween plant aboveground biomass (AB), phosphorus accumulation (PB) and remobilizationand the yield advantage. Here, field exper...
متن کاملCharacteristics of water consumption in water-saving winter wheat and effects on the utilization of subsequent summer rainfall in the North China Plain
Winter wheat (Triticum aestivum L.) grows in dry season but summer maize (Zea mays L.) coincides with rainfall in the North China Plain (NCP). Increasing rainfall use efficiency and harmonizing its utilization between the two species is an effective way to mitigate impact on groundwater deriving from wheat irrigation. One to four times water supply (W1, to W4) were employed in wheat, three wate...
متن کاملIrrigation methods affect wheat flag leaf senescence and chlorophyll fluorescence in the North China Plain
The water resource shortage in North China Plain is an increasing threat to the sustainabilityof wheat (Triticum aestivum L.) production. A two-year field experiment was conducted toexamine the effects of two supplemental irrigation (SI) methods on wheat flag leaf senescence,chlorophyll fluorescence and grain yield. The following field treatments were conducted:no irrigation (W0); SI with 60 mm...
متن کامل